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A biomimetic total synthesis of (+)-intricarene
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Abstract—An asymmetric synthesis of the furanocembrane (�)-bipinnatin J (3a) found in gorgonian corals is described. Treatment
of 3a with VO(acac)2-tBuOOH, followed by acetylation, gave acetoxypyranone 15. When 15 was heated in the presence of DBU, it
underwent a transannular oxidopyrylium-alkene [5+2] cycloaddition producing the polycyclic diterpene (+)-intricarene 1, isolated
from the coral Pseudopterogorgia kallos. The total synthesis of intricarene 1 mimics its most likely biosynthesis via oxidation of bi-
pinnatin J (3a) in vivo.
� 2006 Elsevier Ltd. All rights reserved.
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Intricarene 1 and bielschowskysin 2 are two structurally
intriguing polycyclic diterpenes which have recently
been isolated from the coral Pseudopterogorgia kallos
by Rodriguez et al.1,2 Bielschowskysin 2 has been shown
to display specific in vivo cytotoxicity against cell lung
and renal cancer in the NCI antitumor screen; however,
due to the dearth of material, a detailed biological eval-
uation of intricarene 1 has not been possible at this time.
Diterpenes 1 and 2 are related as significantly rear-
ranged furanocembrane natural products, which we be-
lieve have their origins in the furanobutenolide structure
3.3 In the case of intricarene 1, the most plausible bioge-
netic precursor is 3a, which is a natural product, known
as bipinnatin J, found in P. bipinnata.4 Thus, oxidation
of 3a in vivo5 would be expected to lead to a precursor,
viz 4, to oxidopyrylium ion 5 which by way of transannu-
lar [5+2] cycloaddition6 with the butenolide double
bond should produce intricarene 1 (Scheme 1). In this
letter, we describe an asymmetric synthesis of (�)-bi-
pinnatin J (3a) followed by its conversion into (+)-intric-
arene 1 based on this biosynthesis speculation.

In contemporaneous investigations, Trauner and Rawal,
and their respective collaborators, have independently
drawn attention to the biosynthetic interrelationships
between furanobutenolide cembranes and the polycyclic
diterpenes 1 and 2, and both research groups have re-
cently reported a total synthesis of racemic bipinnatin
J (3a).7,8 Our asymmetric synthesis of (�)-bipinnatin J
(3a), presented here, has features in common with the
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strategies described by Trauner and by Rawal, and uses
a similar combination of Pd(0)-mediated cross coupling
and Cr(II)-catalysed macrocyclisation protocols from
the central intermediate 13. Our synthesis of enantio-
merically pure 13 started from (+)-glycidol 6, however,
and was based on the chemistry we had earlier devel-
oped in our synthesis of the furanocembrane bis-
deoxylophotoxin.9

Thus, conversion of (+)-glycidol into the known alkyne-
diol 7,10 followed by carbometallation, isomerisation
and iodination, using the conditions described by Negi-
shi et al.11 first gave the Z-iodoalkene 8, which was next
transformed into the corresponding epoxide 9 in two
straightforward steps (Scheme 2). Epoxide 9 was now
added to a solution of the anion derived from the a-
selenylester 10 (NaHMDS, �78 �C),12 in the presence
of BF3ÆOEt2, which led to a 3:2 mixture of diastereoiso-
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Scheme 1. Speculative biosynthetic route to intricarene 1 from bipinnatin J (3a).
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Scheme 2. Reagents and conditions: (i) TMS-acetylene, nBuLi, BF3ÆOEt2, �78 �C to �30 �C, 97%; (ii) K2CO3, MeOH/THF, rt, 92%; (iii) Cp2ZrCl2,
AlMe3, (CH2Cl)2 rt, then reflux three days, then I2, THF, �30 �C to 0 �C; (iv) TsCl, C5H5N, 0–3 �C, 48% over two steps; (v) K2CO3, MeOH, 73%;
(vi) NaHMDS, THF, �78 �C, then 9, BF3ÆOEt2, �78 �C to rt, 60%; (vii) p-TSA, CH2Cl2, rt; (viii) H2O2, THF, 0 �C to rt; (ix) PPTS (cat.), CH2Cl2/
MeOH, 62% over three steps; (x) 3-methyl-5-trimethylstannylfurfural, Pd(PPh3)4, CuI, CsF, DMF; (xi) Ph3P, NBS, 72% over two steps; (xii) CrCl2,
4 Å MS, THF, 70%.
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mers of adduct 11 in 60% yield. Treatment of 11 with p-
TSA next gave c-lactone 12 which, following oxidative
elimination of PhSeOH, produced the corresponding
butenolide 13a.9 Deprotection of the TBS group in 13a
then gave the enantiomerically pure alcohol-vinyl iodide
intermediate 13b. Racemic alcohol 13b and its MOM
ether 13c were prepared by different routes by Trauner7

and Rawal8, respectively. These research groups con-
verted intermediate 13 into (±)-bipinnatin J using essen-
tially the same synthetic steps which we have followed
here. Thus, a Pd(0)-catalysed coupling reaction between
the vinyl iodide 13b and 3-methyl-5-trimethylstannyl-
furfural first gave the enantiomerically pure furanobuten-
olide 14a.7 Bromination of 14a using NBS/PPh3 next
led to bromide 14b, which then underwent a smooth dia-
stereoselective intramolecular cyclisation in the presence
of CrCl2 producing (�)-bipinnatin J (3a) in 70%
yield.13,14 The furanobutenolide 3a was obtained as
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Scheme 3. Reagents and conditions: (i), VO(acac)2, tBuOOH, DCM, �20 �C; (ii), Ac2O, Et3N, DMAP(cat.), DCM, rt, 30% over two steps; (iii)
DBU, CH3CN, reflux, 1 h, 10%.
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colourless crystals, mp 144–147 �C, ½a�23
D �103.3 (c 0.91,

CHCl3); Lit mp 141–142 �C, ½a�24
D �125.4 (c 1.65,

CHCl3), and the 1H and 13C NMR spectra were super-
imposable on those reported for natural (�)-bipinnatin
J isolated from P. bipinnata.

We were now in the position to investigate the proposed
biogenetically patterned conversion of our (�)-bipinna-
tin J (3a) into intricarene 1, implicating a transannular
[5+2] cycloaddition reaction from the oxidopyrylium
ion-alkene species 5 (Scheme 1).6 Thus, treatment of
(�)-bipinnatin J (3a) with VO(acac)2 and tBuOOH re-
sulted in oxidative ring expansion of the furan moiety
in 3a and the formation of a mixture of tautomers of
the presumed enedione-hydroxypyrone 4, which could
not be purified and adequately characterised. Instead,
the product from oxidation was acetylated, using
Ac2O–Et3N in DCM at room temperature leading to
6-acetoxypyranone 15 (Scheme 3) as a 5:1 mixture of
C-6 epimers. When a solution of acetoxypyranone 15
in acetonitrile was heated under reflux in the presence
of DBU, the anticipated transannular [5+2] cycloaddi-
tion involving the oxidopyrylium ion 5 took place giving
(+)-intricarene 1 in an unoptimised 10% yield.15 The
synthetic (+)-intricarene was obtained as colourless
crystals, ½a�24

D +52.9 (c 0.136, CHCl3); Lit ½a�20
D +50.0 (c

0.7, CHCl3) whose infrared, and 1H and 13C NMR
spectra were superimposable on those recorded for the
natural product isolated from P. kallos.

In summary, we have achieved an asymmetric synthesis
of the furanobutenolide cembrane (�)-bipinnatin J (3a)
and demonstrated that it can be converted into the
intriguing pentacyclic natural product (+)-intricarene
1, following oxidation to 4 and transannular oxidopyry-
lium-alkene [5+2] cycloaddition involving species 5. We
believe that our synthesis of intricarene demonstrates a
clear biosynthetic relationship with bipinnatin J, and is
therefore biomimetic. Further biomimetic studies are
now in progress to probe links between other families
of structurally intriguing and biologically important nat-
ural products isolated recently from corals, including
bielschowskysin 2.
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Following the completion of this manuscript for publica-
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private communication from Professor Trauner.
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